In-Plane Deformation Mechanics for Highly Stretchable Electronics.
نویسندگان
چکیده
Scissoring in thick bars suppresses buckling behavior in serpentine traces that have thicknesses greater than their widths, as detailed in a systematic set of analytical and experimental studies. Scissoring in thick copper traces enables elastic stretchability as large as ≈350%, corresponding to a sixfold improvement over previously reported values for thin geometries (≈60%).
منابع مشابه
Stretchable and transparent electrodes based on in-plane structures.
Stretchable electronics has attracted great interest with compelling potential applications that require reliable operation under mechanical deformation. Achieving stretchability in devices, however, requires a deeper understanding of nanoscale materials and mechanics beyond the success of flexible electronics. In this regard, tremendous research efforts have been dedicated toward developing st...
متن کاملREVIEW ARTICLE Mechanics of stretchable inorganic electronic materials
Electronic systems that offer elastic mechanical responses to high strain deformation are of growing interest due to their ability to enable new applications whose requirements are impossible to satisfy with conventional wafer-based technologies. This article reviews the mechanics of stretchable inorganic materials on compliant substrates. Specifically, three forms of stretchable structures are...
متن کاملExperimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics
Integrating deformable interconnects with inorganic functional materials establishes a path to high-performance stretchable electronics. A number of applications demand that these systems sustain large deformations under repetitive loading. In this manuscript, the influence of the elastomeric substrate on the stretchability of serpentine interconnects is investigated theoretically and experimen...
متن کاملIn Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte
There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufactura...
متن کاملRugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring.
Research in stretchable electronics involves fundamental scientific topics relevant to applications with importance in human healthcare. Despite significant progress in active components, routes to mechanically robust construction are lacking. Here, we introduce materials and composite designs for thin, breathable, soft electronics that can adhere strongly to the skin, with the ability to be ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced materials
دوره 29 8 شماره
صفحات -
تاریخ انتشار 2017